Document omB9KjgNGRmzpKqwXnN03dj4w
506
CHAPTER 21
1951 Guide
Table 3. Heat-cabbytno Capacity of Type L Copfeb Toeing with Tempebatube Deop of 20 Deo*
Nominal Tube Sizes f tn. to 4 in., and Friction 60 to 720 milinehes per foot.. (A -- Capacity, Mbh. B = Velocity, inches per second) (One milinch equals 0.001 in.)
Nominal Tubs Sob, In.
A HB
A HB
A HB
A y. B
A 1B
A
iy. B
A 154 B
A 2B
A 2X B
A 3B
A 3>4 B
A 4B
Milimcb Friction Loss per Foot op Tubs
720
10 27
20 35
36 37
51 42
104 43
185 55
300 62
625 76
1130 90
1840 98
2750 110
3900 120
600
9 24
18 30
'30 84
46 38
94 45
169 51
270 57
560 68
1010 80
1650 90
2480 100
3505 108
480
8 21
16 25
26 30.
40 33
82 39
149 45
235 51
495 59
890 69
1450 80
2170 89
3100 96
360
6.8 18
13.5 21
22.1 24
34 27
70 34
125 39
200 43
420 - 51
750 58
1210 66
1840 75
2600 83
300
6.2 16.5
12 19
20 21
81 24
63 30
112 35
180 39
' 375 47
6S0 49
1100 59
1650 66
2350 73
240
5.4 14
10.8 17
17A 19
28 21
56 25
100 30
160 35
335 42
600 47
980 52
1450 57
2090 63
180 150
4.6 4 13 11
98 15 13
15 13.1 17 15
23.2 20.5 19 17
47 42 22 19
84 75 25 22
134 120 30 25
280 250 36 32
500 450 42 37
820 740 47 42
1210 1100 51 45
1750 1580 55 49
120 90
3.6 3 10 8.5
76 12 10
118 9.9 13 11
18.1 15.3 14 12
37 32 17 14.5
66 56 19 17
105 90 22 19
200 1S8 27 22
895 335 26
650 550 36 30
980 820 40 35
1390 1180 44 37
75
28 8
5.4 9
9 10
13.9 11.5
28 13
50 15
81 17
170 20
305 23
490 27
740 30
1080 34
60
2.4 7
4.7 8
7.9 9
12.1 10
25 12
4' *
71 15 *
150 18
270 21
420 23
650 26
950 29
For other temperature drops the pipe capacities may be chanced correspondingly* - For example, with temperature drop of 30 deg the capacities shown in this table are to be multiplied by 1.5.
spectively. These figures would also illustrate forced circulation if a pump dr circulator were shown in the return line at the boiler.
One-pipe gravity systems require very precise design owing to the small circulating head available. Also, circulation in them is slow, and tem perature drop is large toward the end of the main, and consequently these systems are usually considered impractical.
One-pipe forced, systems compared with gravity systems provide more rapid circulation, with consequent smaller. temperature drop in mains and more uniform water temperature in all radiators, and are therefore preferred. Special flow and return fittings are available for improving the circulation to risers.
Two-pipe systems have separate flow and return mains. If the return main is direct as shown in Fig. 5 the radiator at the end of the system has
Pi Fi Fi,
il
Fig. 4. One-Pipe System
Fig. 5. A Two-Pipe Dibect Return System
J:
\ Fig. 6^ A Two-Pipe Reversed Return System
Hot Water Heating Systems
507
Table 4. Friction (in Milinches) of Central Circular Diaphragm Orifices in Unions
(One tnilinck equals 0.001 in.)
Diameter or
Vzlocitt or Water is Pipe in Inches pee Second
OzmcsB
(Inches)
2
*
4 | 6 | 8 | 10 j 12 j IS
3/t-in. Pipe
1 36
0.25 0.30 0.35
0.40 0.45 0.50
0.55
1300 650
330 170
2900 1450 740 380 185
5000 2500 1300
660 330 155
75
11,300 5700
2900 1500 740
350 170
20,800 10,400
5200 2600 1300
620
300
32,000 16,000
8000 4000 2000
970 480
45,000 23,000
12,000 6800 2900 1400
700
57,000 26,000 13,000
6500 3200 1600
47,000 24,000 53,000 12,000 27,000
5700 13,000 2800 6400
0.35 0.40
0.45 0.50 0.55 0.60
0.65
900 2000 3500 460 1000 1800 270 570 1000 160 330 580
190 330
200 120
1-in. Pipe
7800 4000
2300 1400 750 440
260
14,000 7200
4100 2300 1300
800 460
22,000 12,000 6400
3700 2200 1300
720
32,000 17,000
9300 5400 3000
1800 1100
37,000 21,000
12,000 7000 4200
2400
65,000 37,000 22,000 50,000 13,000 28,000
7400 17,000 4300 10,000
0.45 0.50 0.55 0.60 0.65
0.70 0.75
1000 660
430 280
190
2250 1450 950 630
420 285
190
4000 2600
1700 1100 750 510 330
Ip^-in. Pipe
8900
5800. 3800 2500 170)
1150 750
16,000 10,400
6800 4400 3000 2000
1300
25,000 36,000 16,400 23,000 10,500 15,000
6900 10,000 4700 6700
3100 . 4500 2100 3000
53,000 34,000 22,000 15,000 10,000
6700
60,000 40,000 27,000 60,000
18,000 40,000 12,000 26,000
0.55 0.60
0.65 0.70 0.75 0.80
0.85
850 1900 3300 600 1300 2300 400 850 1500 260 600 1100 180 400 760
300 540 200 380
1 V2-in. Pipe
7400 5400 3600 2600 1800 1200
860
13,000 21,000 8600 16,800 7200 10,400 4400 . 7000 3000 5000 2200 3200
1600 . 2300
30,000 21,000 14,000 10,000
7000 5000 3000
50,000 30,000 21,000 14,000 10,200
7800
53,000 J. 39,000
28,000 19,000 45,000 13,000 30,000
0.70 0.80 0.90
1.00
1.10 1.20 1.30
890 1850 3500 470 975 1800 255 560 1000 160 340 610
214 375
195
2-in. Pipe
7400 3900 2200 1320
850 460 275
14,000 7400 4200 2520 1600 950 525
22,300 11,700
6500 4000 2500 1360 980
33,000 17,000
9500 5800 3700 1910 1375
37,000 20,500 12,500
7900 4200 3100
38,000 23,000 49,000
14,000 30,000 8100. 16,800 4400 8850
. The tosses of head for the orifices in the 1 M-io* and 2-in. pipe were calculated, from those in the
8mailer pipes, the calculations being based on the assumption that, for any given velocity, the loss of bead
If a *.untlon of the ratio of the diameter of the pipe to that of the orifice. This had been found to be
*ke tests 10.determine the losses of head in orifices in
1-in., and lM-in: pipe, con-
i.i <jrTr
Eusiueering Experiment Station, and also in the tests to determine the losses of brad
ri nr?!?
and 12-in. pipe, conducted by the Engineering Experiment Station of the University
Of Illinois, (BvUdin 109, Table 6. p. 38, Davis and Jordan).