Document mB7dLzjBVw39b5g8KkJ68kLkB
284
CHAPTER 19
1965 Guide And Data Book
Table 5 .... Thermal Conductivity (fc) of Liquid Refrigerants*
Refrigerant . Nemo
r.,,Pj
Thermal Conductivity,
Refer-
k
11
Trif-htoromonofluoro- f
mM.hnn*
| "68
. 0.0605 7 0.055
12 Dkhlorodifiuoro-
j -4
0.0515
7
methane
1 68
0.042
13 taonochlorotrifiuoro- j 68
0.035
7
methane .
\
21 Dichkiroinonofluoro- ( -4
methane
) 68
22 Monochlorodifluoro- ( -4
methane
\ 68
0.0715 0.065 0.0635 0.0525
7 7
* -- Btu per (boar) (cqoaro toot) (Fahrenheit decree per foot).
No. 113 114 30 717 718 1120
Refrigerant
Nome
Trichlorotrifluoroethanel
Dichlorotetrafluoroethane
Methylene Chloride
Ammonia
Water Trichloroethylene .
Jt
-4 68 -4
68
5 86
5
86 32
100 122
Thermal
k
0.048 0.0435 0.044
0.111 0.096 0.29 0.29 0.343 0.363 0.080
*"* 7 7 8 8 8 8
Table 6.... Thermal Conductivity (fc) of Refrigerant Vapors at One Atmosphere*
Refrigerant No. Noma
Temp* F
Thermal Conductivity
k
Refer-
No.
Refrigerant Name
Twnp, F.
Conductivity Refer* k
11 Trichloromonofluoromethane
12 Dichlorodifluoromethane
22 Monochlorodiffuoromethane
113* Tricblorotrifluoroethane
114 Dichlorotetrafluoroethane
86 0.00505 b
30 Methylene Chloride
194 0.00621 . b .
32 / 32
0.0039 0.0053
40 Methyl Chloride
86 0.00591 b 170 Ethane
) 115 125
0.0072 0.0145
194 0.00738 b 600 Butane
32 0.0078
601 Isobutane
86 0.00675 b
32 0.0080
194 0.00824
b
717 Ammonia
86 0.00450 b
194 0.00631 b 744 Carbon Dioxide
1 32 i 122
I 302
32
0.0128 0.0157
0.0235 0.0085
744A Nitrous Oxide
122 0.0111
86 0.00627 194 0.00804
ce 1150 Ethylene
1 162
. i 306
0.0154 0.0226
8 8.
11 8 8
8 11 11 8 11 11 11
* k Bta per (hoar) (eqaare toot) (Fahrenheit decree per foot}* At one halt atmeepbem.
* Average value baaed on data of Qefereneea 4 and 10. * Average value baaed ee data <f Befereoaee 9 and 11.
circulated would be different, depending on the molecular weight. The compression ratio in centrifugal compressors is affected by the vapor density. The density is related to the molecular weight of the gas as well as the temperature and pressure of operation.
PHYSICAL PROPERTIES
Some physical properties of refrigerants are listed in Table 2. They are arranged there in increasing order of atmospheric boiling point. The viscosities of liquid and vapor are shown in Tables 3 and 4 and the thermal conductivity in Tables 5 and 6.
HEAT PROPERTIES
The heat capacities (specific heat) of liquid refrigerants are shown in Table 7 for several different temperatures. These values have been calculated from the heat content (enthalpy) data listed in the'tables of thermodynamic properties in Chapter 20. They are included here for ready reference and to illustrate the magnitude of differences among the various refrigerants. Values at other temperatures can be obtained from Chapter 20. The liquid heat capacity is involved in the refrigeration cycle as.'the condensed liquid is oooled to the evaporation temperature. It' is not often used directly in refrigeration calculations, but an appreciation of the amount of heat involved may help to explain differences in the per formance of different refrigerants, or of the same refrigerant at different temperatures. The vapor heat capacity also can be obtained from tahW of
thermodynamic properties (Chapter 20). The heat capacity at constant pressure can be calculated as follows:
Difference in Heat Content Between Two Temperatures at the Same Pressure
Temperature Difference The heat capacity at constant volume can be calculated from the tables, although some interpolation is necessary:
Difference in Heat Content\
(Between Two Temperatures j -- (0.1851 F)(AP)
at the Same Volume
/
Temperature Difference'
In Table 8 the effects of pressure and temperature on the
heat capacity and the heat capacity ratio (cw'c.) are shown for
several fluorinated refrigerants. The heat capacity at one
atmosphere is illustrated in Table 0 for several fluorinated
refrigerants and in Table 10 for some other refrigerants.
Ah empirical rule of chemistry (Trouton's Rule)< is that the
latent heat of vaporisation at the boiling point on a molar
basis, divided by the temperature in absolute units, is a con
stant for most materials.-This rule has been applied to re
frigerants in Table 11. It holds fairly well for these refriger
ants, although the result is not entirely constant. The rule is
helpful in comparing different refrigerants and in understand
ing the operation of refrigeration systems.
^ .*
ELECTRICAL PROPERTIES
The electrical characteristics of refrigerants are especially important in hermetic systems. Some properties for the liquid and vapor are shown in Tables 12 and 13.
Refrigerants
285
Table 7
Heat Capacity of Liquid Refrigerants
Bfw par f0>) (F dag)
Refrigerant No. Name
-30 F
OF
11 Trichloromonofluoromethane Dichlorodifluoromethane
0.199 0.212
.13 Monochlorotrifluoromethane ' . 0.240
21 Dichloromonofluoromethane 22 Monochlorodifluoromethane 40 Methyl Chloride 113 Tnchlorotrifluoroethaae 114 Dichlorotetr&fluoroethane
0.234 0.257 0.357 0.195 0.208
0.200 0.216 0.260
0.238 0.268 0.365 0.202 0.217
500 ... 600 o-Butane
717 Ammonia** 744 Carbon Dioxide
0.258
1.05 0.45
0.268 0.48 1.10 0.48
* Data from E. L duPocrt de Naawure A Co., Im. Uoed by penaueeioa. t Data Iran General Chemical Divtaloa. Allied Chemical Carp. Uoed by pen&issioa. * Axeotrcpe af Refricerest 12 and 152a (73.8/20.2 percent by ^ifht). * For adtiUocal data, n Reference &
30 F
0.204 0.220 0.295
0.242 0.280 0.370 0.206 0.227
0.278 0.51 1.10 0.62
60 F
0-209 0.227
0.249 0.292 0.380 0.211 0.236
0.290 0.52 1.10 0.75
90 F
0.213
0.257 0.308 0.390 0.217 0.246
0.305 0.53 1.15
Refer-
f
8
1 8 8 8
Table 8 .... Heat Capacity of-Refrigerant Vapors* Bfo per (lb) (F dag)
Refripermd
12 13
12 22 12 13
freswv, pda
10 10 10
100 100 100
200 200 200
v
0.143 0.150 0.153"
50 F
ft ep/ft
0.125 0.130 0.128
1.143 1.150 ;1.190
0.162
6.135
1.195
0.186
- *
0.142
1.310
* Data fnsn E. L daPottt de Nemoun A Co.. Ina. Deed by permiarioQ.
ft
0.149 0.157 0.1C0
0.172 0.166 0.179
0.177 . 0.218
100 F
ft
0.131 0.138 0.136
0.141 0.141 0.143
0.144 0.153
ft/ft
1.133 1.140 1.177
1.225 1.172 1.253
1.230 1.422
0.154 0164 0.166
0.168 0.170 0.180
0.178 0.201
ISO F
ft
0.137 0.145 0.143
0.143 0.147 0.148
0.148 0.155
ft/ft
1.125 1.13 1.166
1.181 1.158 1.215
1.198 1.301
Table 9... .Vapor Heat Capacity of Fluorinated Refrigerants at One Atmosphere* Bto per (lb) (F dag)
etrigeract
11
.21 22 113 114
ft
0.144 0.149 0.135
. . 50 F
ft/ft .
. 0.126 9-130. `
1.148 1.15
0.114 0.129
1.186 1.195
0.155 ` 0.142
1.092
ft
0.140 0.150 0.157
0.142 0.160
0.162
100 F
- c/ '
0.125 0.132 0.137
0.121 0.136
0.149
ft/ft
1.13 1.136 1.14
1.172 1.180
1.087
ft
0 144 0155 0.164
0.149 0 167
0162 0.168
150 F
ft
0.129 0.137 0-145
0.128 0.143
0.154 0.156
ft/ft
1.12 1.127 1.13
1.161 1.168
1.052 1.077
by r~~-^n Befriggract 11 (com General Chemical Drvman. Allied Chemical Corp. Data on other refrigerant* from E. L dnPant de Nemoun A Co.. lac. Ueed
Table 10 . i.. Vapor Heat Capacity of Various Refrigerants at One Atmosphere
Refrigerant* Ntx Name .
Temperahare, F
Bfw/l/h) (F deg) -
ft ft/ft.
170 Ethane
59 ' 212 '
1.22 1.19
717
/ ;! 32 0.50`
Ammonia* - i-v.,-59.;'-
. 1.310.
1 'L.212 ij .0.53
For addittat*! data, ace Reference 6, ' "'lli .......
Refrigerant.
Tempera-
No.. -
Name
F*
744 1150
Carbon Dioxide ' |
Ethylene
j
32
59 212
59 212
fiiu/t/b) (F deg)
ft ft/ft
0-205 0.215
1.304
. 1.255 .1.18