Document RabBQjZgE58g0eV0bGd9V6jJB
,460
CHAPTER 24
1948 Cuidi
[G3, [EH, [ED,
Fig. 4. One-Pipe System ".
Fig. 5. A Two-Pipe
Fig. 6. A Two-Pipe
Direct Return System Reversed Return System
One-pipe gravity systems require very precise design owing to the small circulating head available. Also, circulation in them is slow, and tem perature drop is large-toward the end of the main, and consequently these systems are usually considered impractical.
One-pipe forced systems compared with gravity systems provide more rapid circulation with consequent smaller temperature drop in mains and more uniform water temperature in all radiators, and are therefore preferred. Special flow and return fittings are available for improving the Circulation to risers.
Two-pipe systems have separate flow and return mains. If the return main is direct as shown in Fig. 5 the radiator at the end of the system has the longest supply and longest return piping. The lengths of circuits to the various radiators may be.equalized by using a reversed return main, (see Fig. 6). In some cases reversed return mains require no more piping than direct return systems. '
Table 3. Heat-carrying Capacity of Type L Copper Tubing with Temperature Drop of 20 Deg3
Nominal Tube Sizes % in. to 4 *n., and Friction 60 to 720 milinches per foot. (A Capacity, Mbh. B = Velocity, inches per second') (One milinch equals 0.001 in.)
i SlZB, Ilf.
720 600
A . 10
9
A B
27 24
A 20 18 B 35 30
A A B
36 30 37 34
A HB
61 46 42 88
A 104 94 1 B 48 45
A IK B
185 169 65 51
A 1M B
300 270 62 67
A 625 660 2 B 76 68
A .1130 1010
2H B
90 80
A 1840 1650
3. B
98 - 90
A 2750 ' 2480
3M B
110 100
A 3900 3505
4. B
120 108
480
8 21
16 25
26 30
40 33
82 39
149 45
235 51
495 69
890 69
1450 80
2170 89
8100 .96
Mzukcb'Fbictioii Loss pkb Foot or Tubs
360 300 240 180
6.8 6^ 18 16.5
5.4 14
4.6 13
13.5 12 10.8 21 19 17
9 15
22.1 20 17.8 15 24 21 19 17
34 31 28 23.2 27 24 21 19
70 63 56 47 34 30 25 22
125 112 ioo
84
39 35 30 . 25
200 180 160 134 43 39 .35 30
420 375 335- 280 61 47 42 .36
760 680 600 500 58 49 47 42
1210 1100 66 59
980 52
820 47
1840 1650 1450 1210 75 66 57 51
2600 2350 2090 ' 1760
83. .73
63
55
150 120
4 3.6 11 10
87 13 12
13j 11.8 15 13
20J> 18.1 17 14
42 37 19 17
75 . 66 22 19
120 105 25 22
250 200 32 27
450 395 37 33
740 650 42 36
1100 45
980 40
1580 1390 49 .44
90 75 60
3 25 . 2.4 85 8 7
: 6 5.4 4.7 10 9 8
9.9 9 7.9
11 10
9
. 15.3 135 12J
.12 115
10
32 28 25 145 13 12
56 50. 44 : 17 15 13
90 81 71 19 17 15
188 22 .
335 26
650 30
170 150 20 . 18.
305 270 23 21
490 420 27 23
820 740 650 35 30 26
1180 1080 37 34
950 29..
"For other temperature drops the pipe capacities may be changed correspondingly. Forexample, with . temperature drop of 30 deg. the capacities shown in this table are to be multiplied by 1.5.' '
Hot Water Heating Systems and Piping
461
Table 4. Friction (in Milinches) of Central Circular Diaphragm Orifices in Unions
{One milinch equals 0.001 in.)
Duhstzb or .
Obotces (Inches)-.
*
3
Velocity or Water in Pips in Inches per Second 4 | 6 | 8 | 10 | 12 | IS
Pipe
24: l M
0.25 0.30 0.35
0.40 0.45 0.50
0.55
1300 650 ,330
170
2900 1450 .740 380'
185
5000 11,300 2500 5700 1300 2900
660 1500 330' 740 155 350
75 170
20,800 10,400
5200 2600 1300
620 300
32,000
16,000 8000 4000
2000 970 480
45,000 23,000
12,000 6800 2900 1400 700
57,000 26,000
13,000 6500 3200 1600
47,000 24,000 53,000 12,000 27,000
5700 13,000 2800 6400
0.35 0.40 0.45 0.50 0.55 0.60
0.65
900 2000 460 1000 , 270: .570 160 330
190
3500
1800 1000 580 330 200
120
1-in. Pipe
7800 4000
2300 1400 750 440
260
14,000 7200 4100 2300 .1300 800
460
22,000 32,000 12,000 17,000: 37,000
6400 9300 21,000 3700 5400 12,000 2200 3000 7000 1300, 1800 4200
720 1100 2400
65,000 37,000 22,000 50,000 13,000 28.000
7400 17,000 4300 10,000
0.45 0.50 , 0.55 0.60 0.65 0.70
` 0.75
iobo
660
430
< 280 190
2250 .4000 1450 2600 950 1700 630 1100
420 :750 285 510 190 330
1 Yf-in. Pipe
8900 5800
3800 2500 1700 1150
750
16,000 10,400 . 6800
4400 3000;
2000 1300
25,000 16,'400
10,500 6900 4700 3100 2100
36,000 23,000 15,000 10,000
6700 4500
3000
53,000 34,000 22,000 15,000 10,000
6700
60,000
40,000
27,000 60,000
i8;ooo 40,000
12,000 26,000
0.55 0.60 0.65 0.70 0.75
0.80 0.85
850 1900 3300
600 1300 .2300
400 850 1500 260 600 1100 180 400 760
300 540 200 380
V/rin. Pipe
7400 5400 3600 2600
1800 1200 860
13,000 21,000 8600 16,800 7200 10,400 4400 . 7000 3000 . 5000 2200 3200 1600 2300
30,000 21,000
14,000 10,000
7000 5000 3000
50,000 30,000 21,000
14,000 10,200
7800
' ' -
53,000 39,000 28,000 19,000 45,000 13,000 30,000
0.70 0.80 0.90 1.00 1.10 1.20 1.30
890 1850 3500 470 975 1800 255 560 1000 160 340 610
214 375
195
8-in. Pipe
7400 3900 2200 1320
850 460 275
14,000 7400 4200 2520 1600 950 525
22,300 11,700
6500 4000 2500 1360
980
33,000 17,000
9500 5800 3700 1910 1375
37,000 20,500 12,500
7900 4200 3100
38,000 23,000 49,000 14,000 30,000
8100 16,800 4400 8850
Note.--The losses of head for the orifices in the lK-in. and 2-in. pipe were calculated from those in the smaller pipes, the calculations being based on the assumption that, for any given velocity, the loss of head is a function of the ratio of the diameter of the pipe to that of the orifice. This had been found to'be practically true in the tests to determine the losses of head in orifices in H-in,, 1-in., and lK-in. pipe, con ducted by the Texas Engineering Experiment Station, and also in the tests to determine the losses of- head in orifices in 4-in., 6-in., and 12-in. pipe, conducted by the Engineering Experiment Station of the University of Illinois, (Bulletin 109. Table 6, p. 38, Davis and Jordan).