Document MJ6jvd5w7Gm7YzjxpyJDJY8KM
'- 1
540
CHAPTER 22
1956 Guide' ^
Table 3. Heat-carrying Capacity op Type L Copper Tubing . with Temperature Drop of 20 Deg* . .
Nominal Tube Sizes i in. to 4 in., and Friction 60 to 720 milinches per foot. (A =
. Capacity, Mbh. B = Velocity, inches per second) (One milinch equals O.OOl in.)
Milinch Friction Loss peb Foot of Tube
720 600 480 360 300 240 180 150 120
90
75 60
H
A B
' 8.9 23.6
7.8 20.8
7.0 5.9 18.6 15.7
5.4 14.4
4.7 < 3.9 12.5 10.4
3.6 9.6
3.1 8.2
2.7 7.2
2.3 2.1 6.1 .5.6
H- B
27.6
15.0 24.8
13.0 21.5
11.2 18.5
10.0 16.5
8.7 14.4
7.5 12.4
6.6 10.9
5.6 9.3
5.0 . 4.5 3.9 8.3, 7.4 6.4
H
B
32.2
26.0 28.8
22.5 25.0
19.0 21.1
17.5 19.4
15.0 16.6
13.0 14.4
11.5 12.8
10.0 11;1
8.5 9.4
7.6 6.7 8.4 7.4
H
A B
43.5 34.6
39.0 31.1
34.5 27.6
29.0 23.1
26.5 21.1
23.0 18.3
19.6 15.6
17.5 13.9
15.0 12.0
13.0 10.4
12.0 9.6
10.5 8.4
1
A B
93 43
84 39
74 34
63 29
57 27
50 42.5 23 20
38 18
34 28.5 16 13
26 23 12 11
1# ' B
160 145 128 107
97
49. 45 39 33 .30
85 26
73 22
65 20
57 48.5 18. 15
44' 39 .14 12
m; B
240 206 175 160 140 118 106 56 52 . 45 38 35 30 26 23
93 20
79 17
71 62. 15 13
2
A B
560 510 70 64
450 380 56 47
340 300 250 225 42 37 31 28
195 24
170 21
150 133 19 17
2H
A B
1100 89
930 820 75 66
700 57
630 51
550- 470 44 38
420 ` 370 34 30
310 25
280 250 23 20
3
A B
1650 1500 1300 1100 94 85 74 62
990 '860 56 49
730 650 41 . 37
565 480 32 27
430 375 24
3V* B
105
2250 94
2000 84
1750 73
1500 63
1320 55
iioo- 1000 46 42
860 36
730 31
660' 580 28
A
3600 3200 2800 2400 2150 1900 1600 1440 1250 1150
950 840
B 116 103 .00 77 69 61 51 46 40 37 31
* For other temperature drope the pipe capacities may be changed coirrapondingly. For example, with temperature drop of 30 deg the capacities shown in thi6 table are to be multiplied by 1.5.
spectively. These figures would also illustrate forced circulation if a pump or circulator were shown in the return line at the boiler.
One-pipe gravity systems require very precise design owing to the small circulating head available. Also, circulation in them is slow, and .tem perature drop is large toward the end of the main, and consequently these systems are usually considered impractical.
One-pipe forced. systems compared with gravity systems provide mbre rapid circulation, with consequent smaller temperature drop in mains and more uniform water temperature in all radiators, and are therefore preferred. Special flow and return fittings are available for improving the
circulation to risers. Two-pipe systems, have separate flow and return mains. If the return
main is.direct as shown in Fig. 5 the radiator at the end of the system has
Pi Fl Fl, P, Pi P;
[fjf F
Fig: 4, One-Pipe System
Fig. 5. A Two-Pipe Direct Return System
Fig. 6. A Two-Pip Reversed Return
System
Hot Wfcterc Heating Systems
541-
Table 4; Friction, (in- Milinches) ; op Central Circular Diaphragm Orifices-
in Unions . ...
{One milinch equals 0.001 in.)
V.
Diameteb of
Velocity of Watbb in Pipe in Inches-peb Second
" -
(Inches)
2
3 | 4 j 6 | 8 | 10 | 12 | 18; | 24 . - 36
%-in. Pipe
0.25 0.30 0.35 0.40 0.45 0.50 0.55
1300 650
330 170
2900 1450 740 380 185
5000 2500 1300 660 330
155 75
11,300 6700 2900 1500 740 350 170
20,800 10,400
5200 2600 1300
620 300
32,000 16,000
8000 4000 2000 970
480
45,000 23,000 12,000
6800 2900 1400
700
57,000 26,000 13,000
6500 3200 ! 1600
47,000 24,000 12,000
5700 2800
53,000 27,000 13,000
6400
1-in Pipe
0.35 0.40 0.45 0.50 . 0.55 a. 60 0.65
0.45 0.50 0.55 0.60 0.65 0.70 0.75
900 2000 -460:: "1000 270 - 570 160 330
190
3500 rl800.
1000 580 . 330 200 120
7800 14,000 22,000 32,000
. :40ti0. :?72D0: :lQ00.: 17.000
2300 4100 6400 9300
1400
2300
3700
5400
750 1300 2200 3000
440 800 1300 1800
260 460 720 1100
.37,000 21,000 12,000
7000 4200 2400
.65,000 37,000 22,000 13,000
7400 4300
50,000 28,000 17,000 10,000
1000 660 430 280 190
2250 1450 950 630 420 285
190
1 yi-in. Pipe
4000 2600 1700 1100
750 510 330
8900 5800 3800 2500 1700 1150
750
16,000 10,400
6800 4400 3000 2000 1300
25,000 <16,400 10,500
6900 4700 .3100 2100
36,000 23,000 15,000 10,000
6700 4500 3000
i
53,000 34,000 22,000 15,000
10,000 6700
60,000 40,000 27,000 18,000 12,000
60,000 40,000 26,000
0.55 0.60 0.65 0.70 . 0.75 0.80 0.85
1/4`in- Pipe
850 1900 3300
7400 13,000 21,000 30,000
600 1300 2300
5400 8600 16,800 21,000 50,000
400 850 1500 3600 7200 10,400 14,000 30,000 53,000
260
600 1100
2600
4400
7000 10,000 21,000 39,000
180 400 760 1800 3000 5000 7000 14,000 28,000
300
540-
1200
2200
3200
5000 10,200 19,000 45,000
200 380
860 1600 2300 3000 7800 13,000 30,000
2-in. Pipe
0.70 0.80 0.90 1.00 1.10 120 1.30
890 1850 3500 470 975 1800 255 560 1000 160 340 610
214 375
195
7400 3900 2200 1320 850 460
275
14,000 7400 4200 2520 1600 950 525
22,300 11,700
6500 4000 2500 1360
980
33,000 17,000
9500 5800 3700 19101375
37,000 20,500 12,500
7900 4200 3100
38,000 23,000 14,000
8100 4400
49,000 30,000 16.800
8850
Note.--The losses of head for the orifices in the lH-in. and 2-in. pipe were calculated from those in the jailer pipes, the calculations being based on the assumption that, for any given velocity, the loss of head
a function of the ratio of the diameter of the pipe to that of the orifice. This had been found to be practically true in the teste to determine the losses of head in orifices in -in., 1-in., and lM-in. pipe, conducted by the Texas Engineering Experiment Station, and also in the tests to determine the losses of head in on*
fieea in 4-in., 6-in., and 12-in. pipe, conducted by the Engineering Experiment Station of tie Uniwmtp of l&inoit, (Bulletin 109, Table 6, p. 38, Davis and Jordan).