Document MGY0BQO1gGgZNEgkGyrJKgaKa
40
CHAPTER 3
1965 Guide And-Qqtpj.Book
Ah*. frm th/Sq In.
P
14.696 16 18 20 22 24 26 28:
30 32 34 36 38 40 42 44 46
48
50 52. 54 56 58 60: 62 64 66 68
70 72 74 76 78 80 82 84 .88 88
90 92 94 96 98 100 150 200 300 400 500
-Table,4jv.> . Prppertios'of SATURATED STEAM:,Pressure Table*-:
temp. F .. X't >r-
212.00 216-32 222.41 227.96 233.07 237.82 242.25 246.41
250.33 254.05 257.58 260.95 284.16 267.25 270.21 273.05 275.80 278.45
281.01 283.49 285.90 288.23 290.50 292.71 294.85 296.94 .298.99 300.98
302.92 304.83 306.68 308.50 310.29 ; 312.03 313.74 315.42 317.07 318.68 :
320.27 321.83 323.36 324.87 326.35 327.81 358.42 381.79 417.33 444.59 467.01
, S{*cHk Volvo*
bdbtdpy
. . . Entropy
Set Liquid
Set Vapor
- > -it,
Sat Uqrid
Evap.
. b, . 2
Set Vapor Sat liquid
Evap.
0.01672 -
26.80
180.07
970.3 1150.4
0.01674, 24.75 i ::184.42 . : 967.6; >'3152.0
0.01679 : i,' 22.17 - : 190.56 ;; 963.6- -.1154.2
0.01683;
20.089. ! ; :196.16 * , 960.1- 1156-3
0.01687 >,Vr: 18.375- : (201.33 .. 956.8 '1158.1
0.01691 r.l:r:J6.938 ; ,206.14 ; 953.7: 1159.8
0.01694 (V;-15.715 i > 210.62 H: 950.7; 1161.3
.0.01698;
14.663 - ,214.83 - .1 947.9 1162.7
0.3120 r 0:3184
0.3275 , >0:3366 0.3431 . .0.3500 : 0.3564 > , 0.3623 :
0.01701.0:01704:
0.01707j 0.01709: 0.01712'
0.01715' 0.01717. 0.01720 0.01722
0.01725
L- ' 13.746 I 218.82
945.3' 1 1164.1
12.940
222 59 1 " 942.8 11165.4
>' - 12.228'-; 228.18
940.3 ` 1166.5
, 11.588
229.60
938.0 1167.6
11.015
232.89- S1 935.8 1168.7
-10.498 ! 236-03 " 933.7- 1169.7
*'! 10.029
239.04 J- 931.6- 1170.7
1-'- '9.601' - ` 241.95 ' 929.6 1 1171.6
9.209- ` 244.75 i? 927.7 1172.4
'' -' 8.848- - `247.47 2 925.8 1173.3
0.3680
4 0.3733 : 0<3783 ; 0.3831 ; 0:3876 ' 0:3919 . 0.3960 I 0:4000 >
- 0:4038 > 0.4075 :
0.01727' ,0.01729
0.01731 0.01733. 0.01736
.0.01738 .0.017401 0.01742
0.01744s 0.01746;
= ' ;8.515. ' 250.09 1. 924.0 !:U74.1 - 0.41101 r, - - ,8.208- - - 252.63 ; 922.2 1174.8 .0.4144
-V ,7.923,- . 255.09 920.5 11756 0!4177 i
'7.656 ' 257.50 918.8 ' 1176.3 0.4209 ; -- -.7.407- , < .259.82 . 917.1- ,,-1176.9 . 0.4240 ~;":,7.175 ' ,262.09 . . 915.5- ;1177.6 '0.4270
6.957. . , 264.30 . 913.9. r. 1178.2 : 0:4300 ; - .6.752 , ! 1266.45 ,, 912.3 1178.8 0:4328 :
: ;,6.660 . 288.55 ` ,' 910.8- - ,1179.4 ' 0:4356 '.:: '.`6.378. ;;270.go . ... 909.4 ,. 1180.0 0.4383 ;
0.01748. : 0.01750, 0.01752
0.01754 0.01755 0.01757
0.01759: 0.01761' 0.01762
0:01764!
V.;' -6.206.- ^272.61. 907.9-
6.044 : ';274.57
906.6
5.890 - H276.49. C 905.1
.^5.743;... : 278.37.; 903.7,1
5.604
280.21
902.4
. >....5.472 -1282.02 . 901.1-
-.5.346 : ' 283.79 . 899.7,
u l :-5.2 ;-285.53.. > 898.5
- , / 5.111 i;287.24 897.2.
- * , 5.001 ;; j.288.91.; .! 895.9;
1180.6 : 0.4409, 1181.1 0.4435 1181.6 . 0.4460 :
0.4484 i 1182.6 0.4508 : 1183.1 0-4531. 1183.5 , .0.4554 1184.0 0.4576 <.1184.4 - -0.4598 ! '1184.8 ; 0.4620
0:01766 .0.01768 0.017691 0.01771; 0.01772
0.017741 0.01809
0.01839: 0.01890 0.0193 ' 0.0197 ;
?' 4.896 !;290.58 1 894.7-'
4.796'-'' '.'.292.18- ' 893.6'
! 4.699 - ';293.78 ` 892.3-
!'4.606 ' >295.34 " 891.1
:,4.517 l! !296.89` ! 889.9-
4.432
298.40
888.8
V- 3.015 :`330.51 o ' 863.6
- '2.288-1" !355.36 ' 1 843.0
1.5433 '393.84 - 809.0
i1- *'1.1613'* !424.0- 780.5
> 0.9278" 449.4 - 1 755.0
1185.3 0.4641 1185.7 ' 0.4661
-1186.1 ' ' 0:4682 '1186.4 `0:4702: 1186.8 0.4721:
1187.2 0.4740:
1194.1 -0:5138 1193.4 0.5435: 1202.8 ' 0.5879! 1204.5 0:62141 -1204.4 ; 0.6487
1.4446 1.4313. .1.4128. 1.3962
1.3811j 1.3672 ,1.3544 1.3425
1.3313 1.3209 1.3110 1.3017 1:2929 1:2844' 1:2764' 1.2687 1.2613 112542
1.2474*
,1.2409 1.2346 1.2285' .1.2228 ivies' 1.2112 1.2059. I.2006 1.1955
1.1906 -1.1857, 1.1810 1.1764 1.1720 1.1676 11633 1.1592 1.1551,
i;i5iq
1-1471 1.1433
11394 1.1358 1.1322 1.1286 1.0556 1:0018 0:9225 0:8630 0!8147
Ah*.
Sat Vopor ' Ch/Sq fa. . * `1 ; Pr
' 1.7566
, 1.7497; 1.7403
' 1.7319: 1.7242 1.7172 1.7108: 1.7048-
' ` !
14.696 16 _ 18 -
20 22 ' :
24; 26 : . 28 :
1.6993 ' 1.6941- ! 1-.6893- 1.6848 1.6805. ; 1.6763v . 1.6724r' } : 1.6687 1.6652.
: 1.66171.'
30 " 32-
34:- 36 38 -: 40'": 42 a
44-L-v 46 48 -
. 1.6585:. j 50 . 1.6553* ' 52 1.6523 ; 54.; 1.6494 : 56 i 1.6466. : 58. 116438. ' 60 ; l`.64i2;: { 62 ! r.63S7" : M
1.6362' > 66 ; 1.6338;- i '68"-'
1.6315
70
1.6292
72
1.6270
74 .-
1.6248
76 ,
1.6228 78 -
1.6207.
80
1.6187: ; 82 -
1.6168. : 84 ,
1.6149
86-
1.6130 1 88-
1.6112-
90 -
: 1.6094
92-.:
1.6076
1.6060 1 06--
1.6043
98 .
1.6026 . 100
1.5694 > 150
1.5453 200 .
' 1.5104 ! 300
1.4844' 400-
! 1.4634- < 500;
* Reprinted by perroitticm from Tkfrmmiiatmic Prtperiia af Sl*am, by J. H. Keenmeod P. O. Kejrm publisbed by John Wiiey and Son*. Idc., lSSSeditioa.
Toble 5 ... Coefficients A, B, C, Appearing m Equations ;3, 5, 7,(Maximum -Values of Corrections Defined by Equations
3, 5, 7. 0egree of Saturation'at: Which TheseThree Maxima' Occur/ Pm, Maximum Value of Correction . ; Defined by:Equation 8, qn'd Degree ofSaturatianat WhicJiTHs Maximum Occurs, jz*.
i ~ r.
' (Standard MmotphoneFtotton) t_,
.. , -
.< (F)
A: (ft'/lb.)
-,B; - - li(( C i i l 4cm* i ' .
ftacc.''
li,, !
(Btu/lb.) (Btu/F/Ib.) (ftyib.) (Btu/lb.) (Btu/F/lb.)
; pi,
1 JuMC (Btu/F/Ib.)
4.
' j m
128 1 144
160 176 ' J 192
' -0.0018; 0.00421
0.0096' ' 0.0215:
0.0487
01169 ' 0.3363
' 0.0268 ? 0.00004
0.0650 ; 0.00000
0:1439
0.00020
013149 `0.00042'
0.6969
0.00091
1.636 / ' =-0.00207
4.608
0.00567
0.0004' " 0.0010 > 0.0022-
0.0047 0.0099
0.0207' ` 0.0451
0.0069 0.01550.0332
0.0693 0.1418 -
0.2903
0.6180
0.00001s 0.00002
0.00005 0.00009
0.00019 0.00037
0.00076
.0.4925 ` :0.0015
n
0.4878
0.0025 * (1
0.4805'
0.0040 '
0.4691=
0.0065 > 0 hkk7
0.4511
0.0106
n tfri
0:4213 - -'>'0.0179 . 0.3363
0.3662
0.0333
0.3129
Psychrometrics -
sAife.te* occupied by ". moto of water vapor at the same
feanperatore but at pressure p is
w ,, BT
(11)
P-
According to Daltoo's Rule
; i o.flT *JIT (n* +
(12)
P.
,, . ,uTM -froni EouatioD 12 that the so-called partial IL^f ea^co^tuent is ite'mol-fraction multiplied by_
Sr^sure of the mixture. Thus -
;
(13)
(14)
Equations 13 and 14'may be regarded as Ike Dalton Rule ' defi2tion of partial pressure in terms of the observable terms
"*me taddity ratio W to the mol-mtio
g;
theratioofmolecularweights,namely, 18.016/28.966 ~ 0.622.
Hence, from Equations 13 and 14
IF " 0.622-
(15)
In this section, it is assumed that Dalton's Rule may be __ it_i r-. _..wativV <l well as unsaturated moist air. ror
41
ExompU t: Rework Example t using perfects relations and
steam table data.
,, __
. . ,* .,
Solxttim: From Equations 9 and 20 to 22, and using a* " */
1F/(Q.4441* + 1061 ~ Jw*) - P-240 (< - <*)
Wm
0.444 t + 1061 -, A,*
From Table 2, p* - 0.68002 in. Hg, and Ay* * 31.08 Btu/lb of water. By Equation 16
# _ (0.622)(0,58002)^ _ Q
[b water/lb dry ^
` 29.341
(0,01230)((0.444K63) + 1061 - 31.08] - (0.240)(27)
IF ~
(0.444) (90) + 1061 - 31.08
- 0.006102 lb water/lb'dry air From Table 2, p*. - 1-4219 in. Hg. By Equation 16
W, ^ (-622)(E4219) = 0.03103 lb water/lb dry air 28.499 .
From Equation 1
0.006102 0.1963
0.03103
From Equations 20 to 22 h - (0.240)(90) + (0.006102) ((0.444) (90) +10611
.-*'28.32 Btu/lb dry air
From Equation 19
' (53.35)(549.67)__ , .. 4ft7Rwo AQ6102) 1
IF. - 0.622------ P - P
(J6)
Earlier in this chapter, relative humidity <t> was defined as the ratio of the mol-fraction of water vapor in moist ^*9-",,.. mol-fraction of water vapor in saturated moist' air at the ettm/. temperature and total pressure. According to this defi
nition and Equation 13
07) Pm,
Equations 15 to 17 may be combined to yield a relation between relative humidity arid degree of saturation. Thus
-------- ?---------- ;
i -n
:
08) -
Comparison of the results of Example 1 with those of Ex ample g shows that the perfect-gas relations mayjjve answers very cloy to those of the more exact procedure.
U. S. STANDARD ATMOSPHERE
The definition of the U. S. Standard Atmosphere is useful to the air-conditioning engineer as a standard of reference for estimating barometric pressure at various altitudes. The definition of the Standard Atmosphere includes the following
statements:
,
1. There is a linear decrease of temperature T with altitude Z up to the lower limit of the isothermal atmosphere at 35, 332 it
according to the relation
(
T - T* -- 0.003566 Z
,(?3)
Both <f> and p havethe value zero for dry air and the vajue unity for saturated moist air. At intermediate states they may differ and substantially so at higher temperatures. - A Dalton Rule explosion for volume of moist air per pound
of dry air obtainable from Equation 12 is
' , , R'T: U -M.(i + 1.6078 (T)'
<!9>
p -,p. P
According to Dalton's Rule, the enthalpy of moist air to the' sum of separate contributions from the dry air and the water
vapor. Thus, per pound of dry air
' ft - t +.IFA. "
. . (2).'
where, to be consistent, the specific enthalpies h (dry air) and
A, (water vapor) should be allowed to vary with tempera
ture only. Within the accuracy of Dalton's Rule, the follow
ing equations give suitable values for ft* and ft,: .<
A. - 0.240 t 1 : ., V';V r (21)
h. = 0.444 ( + 106r. ' ;: '
. (22),
Table 6.... Pressure and Temperature for Altitudes in U. S. Standard Atmosphere__________________
AOitod* Fmt
Preunt la. of Hg -,p
T
-V. -. 4-
-1,000 --500
.o +500
+1,000
' +5,000 10,000 15,000
20,000 25,000
30,000
35,000 40,000
. 'c ` 50,000 >
31.02' 30i7 29.92129.38 28-86
24.89 '20.58
16.88 13 75 . 11.10
8.88 7.04 5.54 4.36. . 3.436 ^
+62.6
+60.8 +59.0' +57-2
. , +55.4
*
+41-2 -+23-4 . +5.5 -
-12.3 .
-301....
. ..
-47.9-