Document 65Rodw33Jg2opZevwkLvxeJoR

ARNG-054? THE SCIENCE OF ORGANIC FLUOROCHEMISTRY 3M February 5, 1999 000002 `The Science of Organic Fluorochemistry Introduction "The scienceoffluorochemistry begins with family and is one of the most reactive of all fluorine. Fluorine the elements. It is is the most capable of abundant member of the halogen combining with nearly every other clement in the periodic table, which is why elemental fluorine is rarelyif ever found in nature. The strength of the fluorine bond with other elements also made the discoveryofelemental fluorine a difficult task. Elemental fluorine was not isolated until 1886, a relatively late date, as chemical discoveries go. Therefore, the science offluorochemistry is relatively young. Becauseofits strong electronegative properties, ionic fluorine will mfeotraml wfelauokribdoensdasrewitthehomthoesrtecleocmtmroonnegcahteimviecaaltofmosrmasndofvefrluyosrtinreonfgobuonnddisn wniatthureel,escutrcohpoassitfilvueorastpoamrs.(CalFo)ni.c Naturally occurring fluorinated hydrocarbon molecules rarely occur in nature because of the energy required to make or break the carbon-fluorine bond in biological systems. However, partially and fully fluorinated organic molecules can be synthesized. 3M Experience in Fluorochemistry 3M Company began its history in fluorochemistry with the licensingof specific intellectual property from Dr. SEliemcotnrso-oCfhPemeincnalStFaltueoUrniinvaetrisoint(yEiCnF)1,945t.o syDnrt.heSsiimzoenosrghaandofdleuvoerlionpeemdolaepcruolceess.s,Innotwhisrepfreorcreesds,tooarsgaSniimcons feedstocks are dispersed in liquid, anhydrous hydrogen fluoride, and an electric current is passed through the solution, causing the hydrogen atoms on the molecule to be replaced with fluorine. The predominant `component of the products produced by this process have the same carbon skeletal arrangement as the feedstock used with all of the hydrogen atoms replaced by fluorine. However, fragmentation and rearrangement of the carbon skeleton can also occur and significant amountsof cleaved, branched and cyclic structures may be formed. The degree of fluorination of the organic feedstock is also dependent upon the tshpeecliefnigtchaofrbtoinmcehatihne lpernogctehssofisthruen.feeIdtsitsopcokssainbdlepatroasmyenttehressoizfetfhuellEyCfFluporrioncaetsesdsourcphearsfleuloercotroircgaalnciucrrent and molecules where all of the hydrogen atomsofthe hydrocarbon feedstock have been replaced by fluorine. aitmopmrso.ve3tMhebSuiilmtotnhse EfiCrsFt mparnoucfeascstfuorritnhgeppirlootduscctalieonEoCfFflpuroorcoecshseimnic1a9l4p9roadnudcthsa.s cCounrtrienntuleyd,t3o Mdevheaslotphraened manufacturing sites in the United States using the ECF process (Cottage Grove, MN, Cordova, IL, and Decatur, AL). 3M Production of Sulfonyl-based Fluorochemicals 3M has produced sulfonyl based fluorochemicals commercially for over 40 years using the ECF process. A basic building block of such products and the highest production volume fluorochemical 3M manufactures is perfluorooctanesulfonyl (Reaction 1) fluoride (POSF). The starting feedstock for this reaction is 1-octanesulfonyl fluoride. Reaction 1 2CHpSOF + 34 HF 1-Octanesulfonyl fluoride 4570V pu 2CFuSOF + 17H, ECF Perfluorooctanesulfonyl fluoride (POSF) 2 000003 etnizsymimaptoirctahyndtrtoolyusnidseorsftPaOnSdFt.hat Upnerdfelruoarpoproocptrainaetseuclofnodniitciaocnisd. (thPeFOpeSr)flwuiolrloroecstualntefsruolmfotnhaetechaenmiiocnalcaonrform sbarlotks ewnitdhowmonnofuvratlheerntchmeemtiaclallilcyc.atTiohnesr.efCourrerPenFtOiSnfios rtmhaetuilotnimsattreondgelgyrsaudpaptoirotns that PFOS or its salts cannot product from POSF derived be fluorochemicals and will persist in that form. `The electrochemical fluorination process of biproducts and wasteof unknown and yields about 35%-40% straight chain (normal) POS, variable composition comprised of the following and a mixture 1) higher and CoF15S02F lower straight-chain homologs, ie., n-CnFan. SOSF, which comprise about 7%of the process output .g., CF nSO:F, CF1sSOF, 2) branched-chain, output perfluoroalkylsulfony! fluorides with various chain lengths, about 18-20%of the 3) straight-chain, branched, and about 20-25%of the output cyclic (non-functional) perfluoroalkanes and ethers, which comprise 4) "htyadrrso"g(ehni,gwhhmioclheccuolmaprriwesiegahbtouftlu1or0o-c1h5e%miocfalthbeypourtopduutc.ts) and other byproducts, including molecular eBleeccatursoechoefmisclaiglhtflduiofrfienraetnicoenspirnopcreoscsevsasriceosndsiotmioenwsh,artawfrmoamtelroita-ltso,-laotndanedqufirpommenptl,antt-hteo-mpilxatntu.reTphreodpurocdeudcbtythtahte rheosmuoltlsogfureosm.elTehcetrcoocmhmemeirccailalfilzuoerdinPaOtiSoFn idserthiuvsednoptroadupcutrse acrheemaimciaxltuburte roafthaeprparomxiixmaotfeliyso7m0e%rslainnedar POSF derivatives and 30% branched POSF derived impurities. pDeurrfilnugorpormodeutchtainoen,,hbayvperobdeuecntsveanntdedwatosttehepraotdmuocstpshearreefionrtmheed.pasTth,ebuvtoliamtpilreowvaesmteentpsroadruectusn,dseurcwhayasto capture and destroy incinerator. these releases by The byproducts, thermal oxidation. many of which are The tarsare incinerated incompletely fluorinated at an with in-house, hydrogen hazardous atoms stil waste present, ctoancobnetrroelclyecd,leidn-bhaocuksei,ntwoatshteewEaCtFerptrroecaetsmsenotr asryestpeamrst.ialTlyhedetgrreaadtemdenitnssltuadbigleiziasteiiotnheprrolcaensdsfeisll,eadnodrdliasncdh-arged incorporated. Someofthe non-POSF byproducts are recovered and sold for secondary uses. sPuObSstEanisceistsuesleafd cionmmmaenrcyioatlhleyrv3iaMblfeluporordoucchte,mibcuatlisprpordiumcatrs.ilyTahneimmapjoorrtiatnytiisnutseerdmetdoiaptreodiunctehefusnycnttihoensailslyof dfelruiovraotcihzeemdicfalluso,rotchehiermiaccarlosnyamnsd,hcihgehmmioclaelcnualamre,weaingdhtfoprmoullyamse.ricTporoadulcetsss.erTeaxbtelnet,1 siodemnetihfioemsosloomgeues of POSF, [CFz-1)SO;F where n=other than intermediates in the formation of other 3M 8), principally perfluorohexanesulfonyl fluoride, are also products. PFOS is also a commercialized product for a variety of specific applications. sUuslifnognyPlOfSluForaisdeamboaisiectyboufitldhiengmoblloeccku,leunuisqiunegcchoenmviesnttriioensaclahnybderoccraerabteodn breyacdteiroinvsa.tizCihnagrtPO1 SoFutltihnreosugthhethe `general classesoffluorinated materials made by the "tree". POSF is reacted with methyl or ethyl 3M. The amine to major intermediates are produce either N-methyl represented or N- by the trunk of eeitthhyelrpNe-rfmleutohryolocotranNe-seutlhfyolnpaemrifdleuo(rFoOoScAt)a.nesFulOfSonAamiisdsouebtsheaqnuoelnt(lFyOSreEa)c.ted with ethylene carbonate to form 3 000004 Chart 1 POSF Fluorochemical Reaction Tree Alcohols FEasttteyrsAcid Phosphate Esters Urethanes Copolymers Adpates Acros (-AyperuordodFao.nsufonanidoethano) Silanes Amides Carboxyiates Oxazoldinones, Aloyiates (N-Akyiperfudi@hesufonamide) Amines Quaternary Ammonium Saks Amphotercs (PerfuorcocPtOanSeFsulfony fuoride) Sulfonates (PFOS) 4 000005 ||| FA D ierlfrer enOe S -- 5ra.m y..SOMO 1 - J fSoEi TN. .....m--m a--a--, -- ?a F Ee D 1 T e ee [er HC, [ues = a aa a ate rat The secondary reactions necessarily produce pure producing products. all of these There may derivatives be varying aamroeusnitngsleoforflsueoqruoecnthieamlicbaaltcrhespirdouaclesss(eusnrtehaatctdeod not or pfianratliaplrloydruecatc.teTdypsitacratlilnyg,mtahteesreiarlessiodruailnstearrmeedpiraetseesn,t astucahcaosncFenOtSraAtioornFoOfS1E%) othratleassr.e cSaurcrihedprfoocrewsasreds atroethuender oafccoonmtmienrucoiusaliimzparbloevepmreodnutctp.lanIttios riemdpuocretaonrtetloimuinndaetresttahnedprtheastentchee onofnu-nfnleucoersoscahreymirceaslidmuoailsetiinesthaedpdreoddutcottihoen seunlvfiornoynlmefnltuaolr,idaengdrmoeutpaobofliPcO).SFAgcaainn,alstohebteerrmeimnoavlepdrotdhurcotugohfasuvcharideetygorafdadteigornadwaitlilobnepProFcOeSs.ses (chemical, Physical-Chemical Properties hFalluoogreinnsa,teid.e.orbgraonmiicnsea,reanldescshwleolrlinde,eswchriibcehdhianvtehebesecinenmtoifriec tlhitoerroautgurhelythiannveosrtgiagnaitcedmoblyemcualneys rbeesaerairncgheortsheirn published reports. To propertiesoffluorine. uFnldueorrsitnaenhdafslsueovreirnaaltecdhaorragcantiecr.istpircospewrhtiiecsh, it is necessary differ from the to describe in more other halogens and detail the contribute to the unusual propertiesoffluorochemicals. hFalluoogreinnse,haansdaivsainsodsetrerWicaaalllyssriamdiiluasrotfo a1.h3y5dAr,oxmyolrgerocuopm.paFrlaubolreinteohtahsatothfe ohxigyhgeesnt ealnedctsrmoanlelgeartitvhiatny o(t4h.e0r-- cPaarubloinn-gflsucaolrei)noefbaolnld.thTehhealcoagrebnosn,-falnudortihneehbioghnedstisionntehoef periodic table. the strongest This confers a in nature (~110 strong polarity to the kcal/mol). See Table 2 and also 3. This lead to very strong. high energy the persistenceofcertain bond contributes fluorochemicals. to the stabilityoffluorochemicals. That stability confers a variety of Such unique stability may properties to fluorocarbons as described in Table 4. TABLE 2 Fluorocarbon Structure Considerations Structure HCH HGF H;C-Cl HsC-Br HC Bond Length A 1 1.385 178 1.93 213 Atomic Van Der Waals' Radius A 1.20 135 180 1.95 215 Bond Strength Keal/Mole 101 107 81 67 55 6 000007 TABLE 3 Effect of Increasing Fluorination Structure Bond Length A Bond Strength Keal/Mole HiC-F HFC HEC-F FCF 1385 107.0 1358 109.6 1332 1146 1317 1160 TABLE 4 Stability of Fluorocarbons Chemical Unaffected by any normal reagent React with alkali metals at high temperatures Thermal and Oxidative Stable in air at high Non-flammable temperatures Electrical * High electric strength Low dielectric constant 7 000008 `The high ionization potential of fluorine (401.8 keal/mole) and its low polarizability leads to weak inter- and intramolecular interactions. This is demonstrated in the low boiling pointsoffluorochemicals relative to molecular weight, and their extremely low surface tension and low refractive index. Table 5 `compares the physical properties polarizability. ofa perfluoroalkane with its hydrocarbon analog to demonstrate the effect of low Low Boiling Point: MW Bp (C) Low Heatof Vaporization G-Cal/Gram Low Refractive Index Np20 Low Surface Tension Dynes/cm TABLES Physical Properties (Effect of Low Polarizability) CsFis CsHis 438 114 97 125 20 86.8 1.280 1.3975 15.0 21.8 `The partitioning behaviorofperfluoroalkanes is also unique. Some perfluoroalkanes, when mixed with `ohlyedorpohcoabribconasndanhdydwraotperh,obfiocr.m Athrcehearigmemdismcoiibeltey,phsauscehs,asdecmaornbsotxyrlaitcinagcitdh,atsuplefrofnliucoraicniadt,epdhcohsapihnastearoerbaoth quaternary ammonium soluble becauseofthe hgyrdoruopp,hiwlhiec nnaattutraechoefdtthoestehechpaerrgfeludormioineattieeds.chaTihne,rmefaokrees, the molecule more water such functionalized fluorochemicals can have surfactant properties. A conventional hydrocarbon surfactant generally may be represented as: Tnsoluble Tail Co) Hydrophilic Group Where Ry... represents the hydrocarbon "tail" and *X represents a solubilizing group. 8 000009 Ina similar fashion, fluorochemical surfactants can typically be described by the following chemical structure: a fable Tail -_ =) Hydrophilic Group M`lWuhoerroecthheemiRcy.a.l. "tapiolr"t,imoondiisftiheedstinablleengftlhuoarnodcasrtbrouncttuarile,to*mXereetpreensdenutsseanseoeldusb,ilwihziicnghgprroouvpi.desIt tihsetheixsceupntiiqouneal eraescihsits anbcaesitcoatlhlyerrmeaslpoannsdibclheemfoircaitls actatpaacbkilcihtayratcotderriasmtaitciocfaltlhye rfelduuocreocshuermfiaccaelt.enTshiions,falsuowreolclhaesmibceailngpotrhteiomnajoofr difference between these materials and conventional surfactants. The solubilizing group, nonaqueous systems. ~X is commonly water soluble, but can be designed to be oil soluble for use in a -- = 2) Oleophilic Group s`uTrhfeancattaunrtesohfatvheeboeleenopphrielpiacregdrowuhpivcahriaerseaemxtornegmetlhye sfulrufoarcoechaectmiivcealinsuarfnauctmabnetsr.ofBeynvalitreornimnegnitt,s,fliunocrloucdhienmgical many systems which would degrade hydrocarbon or silicone surfactants. qPuhaylsiitcyalcopnrtorpoelrtuiseesaanvdaimlaatbelreioaln h3aMndlfilnugo.roIcthiesmiicmaplorptraondtutcotsrearmeemprbienrcitphaaltlythtehsoesephpyasriaomcehteemriscnaelepdreodpefrotries choamvpeonbeenetn.obtSaoimneedpfrroodmucptrsomduacytshathvaet naorenfnloutorhiogchhleymirceafilncedo,mapnodnetnhattsmwahyichhacvoenmtroirbeuttehaton tohneedfeltueorrmoicnhaetmiiocnal ofthe values. weight, POSF bOanseedo,bfsleurovreoschaemwiicdaelsr.angTeypiincavlallyuetshefsoer physiochemical parameters among low low molecular weight chemistries tend molecular to have higher iwnatteerrmseodliuabtielsitiynatnhed floorwmeartivoanpoorfpprreosdsuucrtes,thsaonmpeoolyfmtehreisce plroowdumcotlseccuolnatraiwneiingghtthfeml.uorInocahdediictiaolnstaorebeailnsgo likely intermediates in the degradationofpolymeric compounds. 3M Sulfonyl-based Fluorochemical Products mTahneuf3aMctpurroedsutchtelfiinneasltchaotmmuesrecPiOalSiFz-ebdaspreoddufcltu.oroInchoetmhiecraclassaesr,e 3suMmmsealrliszaefdlbueolroowc.hemIincsalomwehiccasheas,no3tMh.er `company incorporates into their final product. `groups are not listed.) (Product lines using fluorochemicals which contain no sulfonyl Surface Treatments Fabric/Upholstery Protector Carpet Protector (High MW (High molecular polymers) weight [MW] polymers) PLeaaptehrearnPdroPtaeccktaogri(nHgigPhroMtecWtorPo(lHyimgehrsM)W phosphate esters or high MW polymers) 9 000010 Surfactants (Low MW chemical substances) Specialty Surfactants Household Additives Electroplating and Etching Bath Coatings and Coating Additives Surfactants Chemical Intermediates Carpet Spot Cleaners Fire Extinguishing Foam Concentrates Mining and Oil Surfactants Other Uses Insecticides (Low MW chemical substances) fSloumoreoocfhtehmeicaPlOsScFandebreiviendtecrhmeemdiisattreisesthaarte3rMelaotrivoeulry cluoswtommoelrescuulsaeriwnemiaghktin(g< o5t0h0erdaflitnoinssh)e.d Tphroedsuects. Such mflaukoeropcrhoedmuicctaslwiinttherumneidqiuaetepsecrafnorbmeancocveaclheanrtalcytebroisutnidcs.to Tahvearmiaejtoyroiftypoofly3mMerifcluhoyrdorcohceamribcoanlsbparcokdbuocneeds ftoor fcloumomreorcchieamliiczaalticoonntaarienuinsgedpoinlysmuecrhsp(oulryemtehraince faonrdmacfroyrltartee)atpmleunstfolfuosruorfcahceemsicaanldamdaitpeartiealss.caFnoprreoxviadmeplseoi,l, tstharionu,gahntdhweaftleurorreosciasrtbaonncemotoiepteyrsoonnatlheapppoalryemlearndlohwoermiengfutrhneisshuirnfgasc.e eSnuecrhgyporfotetchteimvaetperroiadlucttoswfhuinccthitohney are applied. p`Thhoesp3hMatpeaepsetrerpsrootfeNct-oEr(sFcOaSnEb.e dTihveidoetdheirntcolatswsoisgeanNe-raMleFclOaSsEsAes-oafcrcyhelmaitstericeosp.olyOmneer.claAspspilsibeadsteodpoanper, the tpheerfilnudoirvoicdauarlbopnapmeorieftiyberisn.thTehsiesplroowdeurcetds hsausrftahcee perneevrigoyusglryeadtelsyccroinbterdibeuftfeescttoofthleowheorlidnogutthoefsluorfwacseurefnaecergy of energy liquids such as greases and oils. Aflsuoprroecvhieomuislcyaldessucrrfiabcteadn,ttshdeifPfOeSrFg-rdeeatrliyvefdrofmlucoornovcehnetmiiocnaall phryoddruocctasrbhoanveansdursfialcitcaonntepsrouprefratciteasn.ts.SuIcnhmost tsyypsest.emsInthseoymaereaqfuareomuosresyesftfeimcsie,ntsuirnfarceedutceinnsgiosnusrfaascleotwenassio1n5ttool1e6vedlysntehsat/eamrecuannrebaecahtatbalienedw.itThhtehese other pfelruomriolclhioenm,icoarllsesusr.faEctqaunatlslynoirmmpaolrltyanptroisdutchee ftahcetsetheatxtcreermteailnyofltohwevsaelufelsuaotroccohnecmeinctarlatsiuornfsaacse alcotwivaesa1g0en0tpsaratrse estvaebnlestarnodngelfyfeocxtiidvieziinngmasynsyteemxs.treTmaebllye h6osstuimlemaernivzireosntmheentfse,atiunrecsluodfinfglusotrroocnhgelmyiaccaildiscu,rsftarcotanngtlsy alkaline and 10 000011 Table 6 Features of Fluorochemical Surfactants J-- nto pa Smrsotvehr sgttmsionpbvmrisnsstednTcydsioldns I a lcmmtSomtrsstoEvoeeCnTedcShdSsStSsShEcEl were S BO m i nr--e-- J J B Lows srionnRb iin cT nmssiolyoecto rtcliies rn RevucED WATER SPOTTING PSR m ms-- tin-- ge-- ddo st Th mls pth Sr ros bsons, I BR -- PE ------ eodtiooegsruestacpaeinitoveth gor P-------- Swonzor moeven fnvers ompoisfiend Levene J A AAA F Stei amsn marsettseeetmassehn' meres T oepiaT tymtivaemssmtSistas vrwaointnss stamny Crm e Sfomoettes st teihveposrsrhsinteiersew hms TWhweat hEeeA meritevtrid sity mde Low eonceTaaTion B DThommarisesomlal t fioveoonn 000012 1 iMmapnorytaanptp.licMaotrioensofitnevnollviqeumido-rleiqtuihdanorjussotliidr--lliiqquuiiddsiynstteerfmasceasrewehnecroeunstuerrfeadc.e tIennstihoensealcoansees,might be pinrtoecrefsasc.ialQutietnseioofn,teansiwnetlhleasse csausrefsa,ceatceonmsbioinn,atpliaoynsofaasigsnuiiftiacbalnethryodlreoicnarthbeonwestutrifnagctoarntlecvaenlipnrgoduce caodmebgirneaetoifowne,tittiins gthwehfilcuhorcoacnhneomticbaelascucrofmacptlainsthwehdibcyherietdhuercetsyptehealsounref.acNeotremnasliolny,,wihnisluecthhea thhyadtreoacsairlybownetmsataenridalspariedasdsinotnheotrheedruwcitsieonhoafrdthteo interfacial tension. wet surfaces. The net result can be a system Afnoaomtsh.erSuuncihqufeoapmhyssihcaavlecbheareanctfeorrimsutlicatoefd ftlouorersoicshtetmhiecaalcstiiosnotfhehiir gabhiltietympteorfatourrme toorugahg,gryeestsrievseilient fchleammimcaabllsealnidquivda,pocrhse.miTchaelsaenfdoromruglaantiicofnisrehsaovretfooxiucndancdomombenrocxiiaolusapvpalpiocratsiaonndinodsourpsp.ressing 2 000013